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ABSTRACT 
 

This paper presents a survey of some results from and applications of abstract convexity based on the notions of 
Minkowski Duality and sub differentials. In this paper, we also discuss different kinds of abstract convexities as 
order convexity, Simplicial Convexity	, B′- Simplicial Convexity,	mc- Space, c-Space and L- Space. We also discuss 
the relationship between these different abstract convexities.  
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INTRODUCTION 
 
Convexity has been increasingly important in recent years in the study of extremum problems in many areas of 
applied mathematics. The notion of convexity is a basic mathematical structure that is used to analyze many 
different problems. One of the main result of convex analysis asserts that an arbitrary lower semi-continuous 
function � is the upper envelope of the set of all  its affine minorants: 

�(�) = ���{ℎ(�):ℎ������������������	, ℎ ≤ �} 
The supremum above is attained iff the sub-differential of � at the point � is non-empty. Thus convexity can be 
defined as linearity with envelope representation. Many researchers have dealt with the problem of generalizing 
usual convexity from different points of view. This generalization can be categorized in two types. One which is 
motivated by concrete problems and the other which are stated from an axiomatic point of view.  This second notion 
and the concept of envelope representation stimulated the development of rich theory of convexity without linearity, 
known as abstract convexity. In particular, functions which can be represented as upper envelopes of subsets of a set 
of sufficiently simple functions, are studied in this theory. 
 
Many results from convex analysis which are related to various kinds of convex duality can be extended to Abstract 
Convex Analysis.  Abstract Convexity sheds some new light to the classical Fenchel-Moreau duality and level sets 
conjugation.(Singer, 1997). Overview of the origin, basic abstract convexity and cone-vexing abstraction has been 
given. (Kukateladze, 2008). Also the characteristics of abstract convexity structures on topological spaces with 
selection property have been introduced.(Xiang & Xia, 2007).  The notion of duality to arbitrary partially ordered 
sets and abstract sub differentials corresponding to such dualities has been considered.(Sharikov, 2009).  The 
structure of both sub differential and abstract epsilon sub-differential has been discussed and it has been proved by 
the help of examples that some properties which hold for maximal monotone operators and their enlargements in the 
classical case also holds in abstract setting. (Regina & Rubinov, 2008). Some types of convergence of abstract 
convex functions have been studied and shown that under certain conditions, convergence of support sets of a 
sequence of abstract convex functions implies graph convergence of the support sets at a point and the global sub 
differential. (Loffe & Rubinov, 2002).  New inequalities have been derived by sharpening well known inequalities 
by the use of abstract convexity.(Adilov & Tinaztepe, 2009) 

There are some general schemes and approaches to abstract convexity as well as its applications. Here in this paper 
we show that these schemes can be implemented and can serve in the study of different problems in such areas as 
optimization, non smooth analysis, inequalities, theory of quasiconvex and monotonic functions. Also we consider 
some abstract convexities that have been used in the literature to generalize some results on the existence of 
continuous selections and fixed points to correspondences.  In this framework we focus on abstract convexity 
structure called mc-spaces which is based on the idea of substituting the segment that joins any pair of points by a 
set that plays their role and study the relationship between it and L-convexity. (Ben-El-Mechaiekh et al., 1998). 
which is equivalent to it, simplicial convexity(Bielawski, 1987)..	�-spaces,(Horvath, 1991, 1993)., �′- Simplicial 
convexity(Ben-El-Mechaiekh et al., 1998)  and the convexity induced by an order.(Horvath & LLinares, 1996). 
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The paper formulation is as follows: In the next section we define abstract convexity, Minkowski Duality and ISSI 
functions. In section 3, we describe in brief about sub differential and abstract sub differential. Section 4 describes 
different kinds of abstract convexities- order convexity, �-Spaces, �- Space and ��- Space. In section 5, Simplicial 
convexity and �′- Simplicial Convexity is given. In section 6, a brief description of �-convex structure is given. In 
section 7, relationships between the abstract convexities are explained. At last some applications of these abstract 
convexities are given.  
 
ABSTRACT CONVEXITIES, MINKOWSKY DUALITY, ISSI FUNCTION 

 
In this section, we present some particular abstract convexities that appear in the literature, in relation to the problem 
of the existence of continuous selections and fixed points to correspondences. The general notion of abstract 
convexity structure is as follows: 
Definition 1. Let � be a set of functions defined on a set �. Then the function �defined as follows on	� is called 
abstract convex with respect to  � or �-convex. 

�(�) = ���{ℎ(�):ℎ������������������	, ℎ ≤ �} 
Definition 2. A set �	� is called (�, �) − ������ if ∃ a function �:�®	�� such that � = �(�, �). Here the set of 
all (�, �) − ������ sets is denoted by  �(�, �). 
Definition 3.  A family � of subsets of a set � is an abstract convexity structure for  � if ∅ and � belong to �	and � 
is closed under arbitrary intersections. 
The elements of � are called �-convex or simply abstract convex subsets of � and the pair (�, �)is called a convex 
space. Moreover the abstract convexity notion allows us to define the notion of the convex hull operator, which is 
similar to that of the closure operator in topology. 
Definition 4. If � is a set with an abstract convexity � and � is a subset of  �, then the hull operator generated by a 
convexity structure	� which will denote by �� and call �-convex hull , is defined for any subset		� ⊆ � by ��(�) =
∩ {�Î	�:� ⊆ �}. 
This operator enjoys certain properties that are identical to those of usual convexity: for example, ��(�)is the 
smallest �-convex set that contains �.  
There are two definitions of convexity for closed sets. One of them is the inner definition based on the notion of 
convex combination and the other outer definition is based on the separation property. Abstract convexity leads to a 
generalization of the outer definition.  
Symmetrically, we can also define  H-concave functions. 
Definition 5. A function �:�®	��  is said to be abstract concave or �-concave if	∃ a set �	� such that �(�) =
���{ℎ(�):ℎÎ�}∀		�Î	�. 
Definition 6. Let �(�, �)be the set of all �-convex functions. Then a �(�, �) −concave function �:�®	��  is called 
���-	� –convex. 
Definition 7. The mapping :	�(�, �)®	�(�, �) defined by (�) = �(�, �) is called the Minkowski Duality. It is 
an isomorphism between the ordered sets �(�, �) and �(�, �). 
Definition 8. The ISSI functions are increasing non-convex functions whose level sets are star shaped with respect 
to infinity. These are abstract convex with respect to min-type functions. 
 
SUBDIFFERENTIAL AND ABSTRACT SUBDIFFERENTIAL 
 
One of the main notions which play a key role in various applications, is the sub differential. There are two 
equivalent definitions of the subdifferential for a convex function. The first of them is based on the global behavior 
of the function whereas the second definition has a local nature and is connected with a local approximation of the 
function. For a differentiable convex functions these two definitions represent support and tangent sides of the 
gradient respectively. 
Definition 9. A linear function � is called a member of the subdifferential that is a sub gradient of the function � at a 

point � if the affine function ℎ(�) = �(�) − ��(�) − �(�)� is a support function with respect to �, that is ℎ(�) ≤

�(�)∀		�.  
Definition 10. The sub differential is a closed convex set of linear functions such that the directional derivative is 
the upper envelope of this set.  
The various generalizations of the second definition have led to the development of non smooth analysis. The 
natural field for generalizations of the fist definition is abstract convexity. Now we give the definition of the abstract 
sub differential for abstract convex functions. 
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Definition 11. Let � be a set of real valued elementary functions defined on a set �. A function ℎÎ� is called the 

abstract subgradient of an �-convex function � at a point � if �(�) ≥ 	ℎ(�) − �ℎ(�) − �(�)�∀		�. The set ���(�) 

of all abstract subgradients of	� at � is referred  to as the abstract subdifferential or �- subdifferential of the function 
� at the point �.  
 
ORDER CONVEXITY, �-SPACES	, �- SPACES	,��- SPACES 
 
ORDER CONVEXITY 
 
Definition 12. If (�, ≤)is a partially ordered set and  ∀	�, �Î	�, the closed interval is denoted by [�, �] =
{�Î	�:� ≤ � ≤ �}, so that it is possible to define an abstract convexity structure on	�, called order convexity by 
considering the abstract convex sets like � ⊆ �, such that ∀	�, �Î	�, [�, �] ⊆ �.(Horvath &LLinares, 1996). 
Moreover, if (�, ≤) is a (sup) semilattice and the supremum of (�, �)is denoted by �	Ú�, then it is possible to 
consider the abstract convex sets like � ⊆ �, such that ∀	�, �Î	�, [�, �	Ú�] ∪ [�, �	Ú�] ⊆ �.  
�-SPACES 
We can consider some abstract convexities on a set � by associating to any finite family of points in �, a subset of 
�. This subset is in some sense, the generalized convex hull of these points. This is the case of notion of�-Space 
which associates in infinitely connected set ��, that satisfies some monotonicity conditions to any finite subset of 
�.(Horvath, 1993).  The notion of  �-Space is as follows: 
Definition 13. If � is a topological space and 〈�〉 denotes the family of non-empty finite subsets of �, then a �-
structure on � is given by a non-empty set valued map  G ∶ 〈�〉 → � that satisfies: 

1. ∀	�Î〈�〉,G(�)is non-empty and infinitely connected. 
2. ∀	�, �Î〈�〉, �	�ÞG(�) ⊆ G(�). 

The pair (�,G) is called �-Space, and a subset � ⊆ � is called an � –set iff, it is satisfied ∀	�Î〈�〉,G(�) ⊆ �. 
In the context of topological vector spaces, this definition includes as a particular case the notion of usual convexity. 
The family of � –sets define an abstract convexity on �. 
�- SPACES 
The notion of �- Space is a different abstract convexity that appears in the context of existence of continuous 
selections and fixed points to correspondences and which generalizes the �′- Simplicial convexity as well as the 
notion of �-Spaces. 
Definition 14. An �- structure on � is given by a nonempty set- valued map G ∶ 〈�〉 → �, such that for every 

�Î〈�〉, say � = {��, ��, … , ��}, ∃ a continuous function ��:	∆�→ G(�)such that ∀�{0,1, …�}, ���∆�� ⊆
G({��:�Î	�})	. 
The pair (�,G), is then called �- Space and a subset � of �, is called an �- convex set if		∀�Î〈�〉,	then G(�)	�. 
Clearly the family of �- convex sets define an abstract convexity structure on �. 
��- SPACES 
The notion of ��- Space is a generalization of �-convex continuous structures, which is obtained by relaxing the 
continuity condition on function	�. Now the ideal is to associate, for any finite set of points, a family of functions 
requiring their composition to be a continuous function. The image of this composition generates a set associated 
with the finite set of points, in a similar way to the case of  �-Spaces or simplicial convexity. However, in contrast to 
these cases, no monotonicity condition on the associated sets is now required. 
Definition 15. A topological space � is an ��- Space if for every �Î〈�〉, say � = {��, ��, … , ��},	∃ a family of 
elements {��, ��, … , ��}	� and a family of functions ��

�: � × [0,1] → �, such that for � = 0,1, … �, 	��
�(�, 0) =

�, 	��
�(�, 1) = ��, ∀	�Î	� and function ��:	[0,1]

� → � given by 
��(��, ��, … , ����) = 	��

�(… (	����
� (��, 1), ����), … , ��), is a continuous function. 

The notion of ��- spaces range over a wide field of possibilities, since it can appear in completely different 
contexts. The ��- spaces are also extensions of �-convex continuous spaces. If an ��- structure is given, it is 
possible to define an abstract convexity, by considering the family of sets that are stable under function ��.  
 
SIMPLICIAL CONVEXITY AND�′- SIMPLICIAL CONVEXITY 
 
(i) SIMPLICIAL CONVEXITY 
A different way of introducing an abstract convexity structure from a family of continuous functions is by 
associating a continuous function defined on the standard simplex that satisfies some conditions to any finite subset 
of �.(Bielawski, 1987). 
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Definition 16. If � is a topological space and ∆�, the �-dimensional simplex, � has a simplicial convexity if for 
each �Î	� and for each (��, ��, … , ��)Î�

�, ∃a continuous function F[��, ��, … , ��]:∆���®	� that satisfies 
1. ∀	�Î	�, F[�](1) = � 
2. ∀	� ≥ 2, ∀(��, ��, … , ��)Î�

�, ∀(��, ��, … , ��)Î∆���, if �� = 0, then  
F[��, ��, … , ��](��, ��, … , ��) = F[���](���) 

Where ��� denotes that �� is omitted in (��, ��, … , ��). 
Moreover, a subset � of � is called a simplicial convex set iff, ∀	�Î	� and ∀(��, ��, … , ��)Î�

� it is satisfied that 
, ∀	�	Î∆���,F[��, ��, … , ��](�)Î	�. 
The simplicial convex sets are stable under arbitrary intersections. They therefore define an abstract convexity 
structure. 
 
(ii) �′- SIMPLICIAL CONVEXITY 
The notion of �′- Simplicial convexity is an obvious generalization of the notion of Simplicial convexity, since we 
weaken the conditions required of the continuous function that defines the �′- Simplicial convexity. Moreover, the 
notion of �′- Simplicial convexity allows us to connect the notion of �-Spaces with that of simplicial convexity as 
well as with other notions of abstract convexities we will introduce later. 
Definition 17. A topological space � has a �′- Simplicial convexity if for each �Î	� and for each 
(��, ��, … , ��)Î�

�, ∃ a continuous function F[��, ��, … , ��]:∆���®	� satisfying that 
∀	� ≥ 2, ∀(��, ��, … , ��)Î�

�, ∀(��, ��, … , ��)Î∆���, if �� = 0, then  
F[��, ��, … , ��](��, ��, … , ��) = F[���](���) 

In this context a subset � of � is called a �′- Simplicial convex set iff ∀	�Î	� and ∀(��, ��, … , ��)Î�
�  it is 

satisfied that , ∀	�	Î∆���,F[��, ��, … , ��](�)Î	�. 
It is obvious that the family of �′- Simplicial convex sets is an abstract convexity, and the convex hull induced by 
this convexity is a sub simplicial hull.(Wieczorek, 1991). Moreover, the abstract convex sets obtained from a sub 
simplicial hull are �′- Simplicial convex sets. 
 
�-CONVEX STRUCTURE 
 
The �-convex structure is based on the idea of considering functions that join pairs of points. Here the segments 
used in usual convexity are substituted by an alternative path, previously fixed on �. 
Definition 18. A �-convex structure on the set � is given by a mapping		�:� × � × [0,1] → �. Furthermore (�,�) 
will be called a  �-convex space and function � a �-convex function. 
If (�, �) is a �-convex space, it is possible for any pair of points �, �Î� to associate themselves with a subset given 
by �(�, �, [0,1]) =∪ {�(�, �, �):�Î[0,1]}(Prenowitz&Jantosciak, 1979) or with interval spaces (Stacho, 1980). 
Moreover we can define an abstract convexity on � by considering a family, �, of subsets of �	as follows: 

�Î	�	∀	�, �Î	�		�(�, �, [0,1]) ⊆ � 
The elements of 	�	will be called �-convex sets and the �-convex hull operator associated to this family � of �-
convex sets will be denoted by ��. 
A different case of �-convexity is that of the equiconnected spaces, introduced by Dugundji and Himmelberg which 
are a particular case of �-convex continuous spaces.(Himmelberg Ch. J. (1965) Dugundji,1965;Himmelberg, 1965) 
Definition 19. A metric space X is equiconnectediff∃ a continuous function		�:� × � × [0,1] → � such that 
∀	�, �Î	�, �(�, �, 0) = �, �(�, �, 1) = �, �(�, �, �) = � for any �Î[0,1]. 
 
RELATIONS BETWEENABSTRACT CONVEXITIES 
 
In this section we give the proof of some theorems showing the relationship between some of the abstract convexity 
notions defined above. 
 
RELATION BETWEEN�-CONVEX CONTINUOUS SPACE AND�-SPACE 
 
Theorem 1. If (�, �) is a �-convex continuous space, then ∃ a nonempty set-valued map G ∶ 〈�〉 → � such that 
(�,G)is a�-Space and �-convex sets are �-sets. 
Proof: If (�, �) is a �-convex continuous space, then we can define the mapping G ∶ 〈�〉 → �, by means of the �-
convex hull, that is G(�) = ��(�). Then by applying preposition 1.1 (LLinares,1995), we know that G(�) is 
contractible. Moreover it is easy to prove that ∀�, �Î〈�〉, if �	�, then G(�)G(�), So (�,G)is a�-Space. 
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Finally, to show that �-convex sets are �-sets, assume that ∃ a convex set �such that �Î〈�〉and G(�) = ��(�) is 
not properly contained in �. Then we have that �	��(�), �	�	and that both of them are �-convex sets, so 
�	� ∩ 	��(�) is not properly contained in	��(�),	which is in contradiction  with the fact that 	��(�)is the smallest 
�-convex set containing �. 
 
RELATIONSHIP BETWEEN�-CONVEX CONTINUOUS STRUCTURES AND SIMPLICIAL 
CONVEXITIES 
 
Theorem 2. If (�, �) is a topological space with a �-convex continuous structure, then it is possible to define a 
simplicial convexity on � such that �-convex sets are simplicial convex sets.  
Proof: For any �Î	� and for any  (��, ��, … , ��)Î�

�, we define the family of functions F[��, ��, … , ��] as 
follows,  
If � = 1	,F[a]=�(�, �, 1)   and for � ≥ 2, 

F[��, ��, … , ��](��, ��, … , ��) = �(…�(�(��, ����, ����), ����, ����)… ), ��, �� 
It is easy to show that this family of functions defines a simplicial convexity on � that coincides with the one that is 
obtained from �. 
 
RELATIONSHIP BETWEEN ORDER CONVEXITY STRUCTURE AND SIMPLICIAL CONVEXITY 
 
Theorem 3. If (�, £) is a topological semilattice with path-connected intervals, then	∃ a Simplicial Convexity on � 
such that order convex sets are simplicial convex sets. 
Proof: If (�, £) is a topological semilattice with path-connected intervals, then we can define a non-empty set 
valued mapG ∶ 〈�〉 → �, given by G(�) = ⋃ [�, sup �]�Î� . By applying lemma 2.1 (Horvath & LLinares, 1996).  we 
know that for any �Î	�, any continuous function �:�∆�®G(�)can be extended to a continuous function 
�:∆�®G(�), so G(�)is ��. Therefore, if we define ℎ���{�} = G(�),	the family of order convex sets is an abstract 
convexity such that ℎ���{�} is ��and by preposition 1.5 (Bielawski, 1987), we obtain the conclusion. 
 
RELATIONSHIP BETWEEN �-SPACES AND SIMPLICIAL CONVEXITYAND	�′- SIMPLICIAL 
CONVEXITY 
 
Theorem 4. If (�,G)is a �-Space such that ∀	�Î�, �ÎG({�}), then � has a Simplicial Convexity such that � −sets 
are Simplicial Convex Sets. 
Theorem 5. If (�,G)is a �-Space, then it is possible to define a �′- Simplicial Convexity such that � −sets are	�′- 
Simplicial Convex Sets. 
Theorem 6. If � is a topological space with a Simplicial Convexity, then this Simplicial Convexity defines a �′- 
Simplicial Convexity such that Simplicial Convex Sets are �′- Simplicial Convex Sets. 
Proof:  The Proofs of theorem 4, 5, 6. are obvious and can be immediately obtained from the definitions given 
above.   
 
APPLICATIONS 
 
Abstract convexity is a very convenient tool for studying many problems in different areas of mathematics. We 
begin with applications to optimization. Abstract convexity is very useful both in the theoretical study of 
optimization problems and in the development of numerical methods. In particular, abstract convexity sometimes 
allows us to obtain a conceptual trivialization of a problem under consideration. This means that we can obtain a 
conceptual trivialization of a problem by means of a theory if it is quite easy to obtain a clear understanding of the 
problem in the framework of the theory. Though there are technical obstacles and we need time to solve the problem 
but ultimately problem is solved. 
Two examples of such trivialization by means of abstract convexity are Lagrange Multipliers Theory and Solvability 
Theorems. Approach to the Lagrange Multipliers Theory is based on the notion of the abstract sub 
differential.(Pallaschke & Rolewicz, 1997). The most convenient tool which allows us to conceptually trivialize the  
study of solvability theorems is Minkowski Duality. Some important applications are as follows: 
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GENERAL SOLVABILITY THEOREM 
 
We shall consider Conic set H of functions defined on a set �. For �	�, the conic hull cone � of � is defined by  

cone	� =� lV

l��

 

We shall use the (�, �)-convex hull ����	of the set �	�. 
Now we prove a theorem which allows us to obtain a clear understanding of solvability theorems in the framework 
of abstract convexity. It follows from this theorem that the main difficulties related to solvability theorems are in 
describing support sets and (�, �)-convex hulls where � is a given conic set of functions. 
Theorem 1.  Let � be a conic set of real valued functions defined on � and let � be any arbitrary index set. Let f and 
, for each �Î�, �� be �-convex functions defined on �.	Then the following statements are equivalent: 

a) (∀�Î�)��(�) ≤ 0Þ	�(�) ≤ 0 
b) �(�, �)	��� ⋃ �����Î� �(��, �) 

Proof: Let �(�) = 	 ������(�). Clearly �	is an �-convex function. Let �� = 	{�:�(�) ≤ 0}, �� = 	{�:�(�) ≤ 0}. 

Consider the indicator functiond  of the set ��: 

d(�) = �
+∞ �Ï��
0 �Î��

� 

Thus we have 

a) ��	��	� ≤ d	�(�, �)	�(d, �) 
Since d	 = supl�� lg =supl���Î� l�� 
and Minkowski duality is an isomorphism between complete lattices �(�, �) and �(�, �),it follows that  

�(d, �) = 	��� � �(��, �) =

l���Î�

	��������

�Î�

�(��, �). 

Hence the theorem is proved. 
 
NONSMOOTH ANALYSIS 
 
For a local approximation of a nonsmooth function various constructions are used which lead to a non-linear 
approximation of the first order and to a non quadratic approximation of the second order of a given function. Very 
often an approximation is accomplished by various kinds of generalized derivatives of the first order which are 
positively homogeneous functions of the first degree. In order to apply these derivatives one should express them in 
terms of linear functions. 
Methods of abstract convexity ( namely F�-convexity and convexity with respect to the set �(�)of all symmetric 
operators) allows one to obtain deep results in the study of the second order approximation of nonsmooth functions 
both in finite dimensional and infinite dimensional cases. In particular the inf- convolution in the abstract convex 
setting is a very useful tool in the study of such problems.  
 
QUASICONVEX FUNCTIONS 
 
Abstract convexity is a very useful tool in the study of quasiconvex functions. Various schemes for the application 
of abstract convexity to quasiconvexity were suggested.(Legaz, 1988; Penot&Volle, 1998,1990; Singer, 1997; 
Volle, 1985). In particular, the following topics have been discussed: 

 Various kinds of supremal generators of the set of all lower semi-continuous quasiconvex functions or the 
set of all evenly quasiconvex functions and also supremal generators of various subsets of these sets. 

 Various kinds of conjugations in quasiconvex analysis; many of them can be considered from the abstract 
convex analysis point of view, by applying the level sets conjugation. 

 Various kinds of sub differentials; many of them can also be considered from the abstract convexity point 
of view. 
 

APPLICATIONS TO ECONOMICS 
 
Various classes of monotonic functions as well as quasiconvex functions are used in mathematical economics. To 
illustrate the motivation for various classes of abstract convex functions from mathematical economics, we consider 



Review of Business and Technology Research, Vol. 14, No. 2, 2017, ISSN 1941-9414 

19 
 

the commodity space ��
�. Some important functions which are used in economics are production functions and 

utility functions.  
 
A production function �:��

�®��describes an output �(�) of the economical system as a function of its input �Î��
�. 

As a rule increasing production functions are considered. One of the main characteristics of production functions is 
the so-called returns to scale. A function � is said to have the constant returns to scale (respectively , decreasing 
returns to scale , increasing returns to scale) if �(a�) = a�(�)∀a > 1(respectively	�(a�) < a�(�)∀a >
1, �(a�) > a�(�)∀a > 1). It is easy to check that �has constant returns to scale iff �(a�) = a�(�)∀a > 0 and 
�has decreasing returns to scale iff (a�) > a�(�)∀aÎ(0,1]. Thus an increasing production function with constant 
return to scale ( respectively, decreasing returns to scale) is an IPH function (Increasing Positively  Homogeneous 
Function). In the same manner, � has increasing returns to scale iff �(a�) < a�(�)∀aÎ(0,1]. 
 
Now we consider utility functions. Since we assume that all goods are essentially useful , it follows that a utility 
function increases. One of the main properties of a utility function � can be expressed in the following form: 
�(a�)£	��(�), ∀	�Î��

�, ∀a > 1. This is the so- called Law of diminishing marginal utility. Thus a utility function is 
an ISSI function. Hence we should actually consider quasiconcave ISSI functions as utility functions. 
 
CONCLUSION 
 
This paper well establishes the relationship between abstract convexities and discusses applications in economics 
and  general solvability theorem. 
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