
Review of Business and Technology Research, Vol. 14, No. 2, 2017, ISSN 1941-9414

71

COST OPTIMIZATION AND RELIABILITY GROWTH MODELS WITH
IMPERFECT DEBUGGING AND CHANGE POINTS

Madhu Jain, Department of Mathematics, IIT Roorkee, Roorkee, Hardwar- 247 667 (India)

 (madhufma@iitr.ac.in, drmadhujain.iitr@gmail.com)

ABSTRACT

The number of faults in the software (S/w) can be reduced by debugging process which includes the observing
or locating the faults and then put appropriate efforts for the removal of the faults. Most of the reliability
growth models study the perfect debugging process; however this is not the case in real world scenarios due to
fact that during the debugging process some new fault may also come on the surface. In this investigation,
reliability modelling of the software system with imperfect debugging (ID) is presented. The software
reliability has been examined by the assessment of fault contents in the S/w and associated total system testing
costs. To develop the generalized SRGM, the fault reduction, ID and change point are included. Furthermore,
testing effort function (TEF) is also considered to solve the optimization problem subject to reliability
constraint. The numerical simulation and sensitivity analysis have been carried out to determine the optimal
time to release the S/w.

Keywords: Software reliability, NHPP, Testing effort, Imperfect debugging, Change points, Cost model,S/w

release policy.

INTRODUCTION

Most of the reliability growth models available in literature are developed by considering the perfect process for
debugging; however this is not the case in real world scenarios due to fact that some faults may enter during the
debugging process also. For the prediction of the software reliability indices, an imperfect debugging process should
be taken into account while developing the NHPP models for the software.

The software reliability literature is mainly concerned with the analysis of mean value function in the perfect
debugging environment during the testing process. There is a need of developing software reliability model which
will be suited for the imperfect debugging environment. In recent past, a few papers on the software reliability
growth have appeared which studied the imperfect testing process (Xia et al., 1993; Kapur et al., 1994;Kapur and
Younes; Zeephongsekul, 1995). Chatterjee et al. (2004) have provided reliability indices by considering the
imperfect debugging phenomenon to analyze the NHPP model for the N-version software system. The imperfect
debugging and learning phenomenon were taken into consideration by Pham (2007) while developing the NHPP
model for the assessment of reliability metrics ofS/w. Jain and Jain (2013) employed the quasi renewal process to
explore the S/w testing and imperfect debugging.

The NHPP for determining the software reliability release policy (SRP) using the testing effort functions can be
modeled as Exponential, Rayleigh and Weibull (Catuneanu et al., 1991). Kapur and Bhalla (1992) discussed
various aspects of SRP by developing the NHPP model for reliability prediction. Recently, Cortellessa et al.(2015)
have managed the evolution of the software architecture to minimize the costs while keeping the reliability
constraints within certain threshold limits. For controlling the reliability growth of the concerned S/w, change points
and fault reduction factor play important role. Fault reduction factor may also be affected by the environment. Some
factors like imperfect debugging, time lag etc. can be incorporated to analyze the effect of environmental factors on
the SRP (Huang and Hung, 2010, Pachauri et al., 2015; Jain et al., 2016).

MODEL DESCRIPTION

To describe the SRGM, we consider the initial number of faults and fault detection rate. The fault detection process
depends on many factors including the software testability. The fault detection is assumed to change at specific
points known as change points. The testing efforts consumed are assumed to be Weibull type to examine how
effectively the faults are identified and subsequently removed from the S/w.

Review of Business and Technology Research, Vol. 14, No. 2, 2017, ISSN 1941-9414

72

For modeling the NHPP model for the assessment of reliability growth,the following notations have been used:

()a Total number of faults detected including the newly introduced fault sat instant .

a Number of faults detected.
β Fault introduction rate.
η(γ) Scale (Shape) parameter.
K Average total testing effort expenditures required for the software testing.

()d Fault detection rate function at instant .

bi Fault detection rate per unit testing effort for ith stage of change point, 1 ≤ i ≤ n

()m Fault reduction factor at instant .

()w Mean instantaneous testing effort expenditure at instant .

()m Mean number of faults detected in the given time interval (0,] .

Now we shall develop the software reliability growth model (SRGM) by incorporating some more realistic features
such as (i)fault reduction factor (FRF) (ii) imperfect debugging (iii) testing effort of Weibull type(iv) multiple
change points. The software reliability growth model is formulated by considering the NHPPand under certain
assumptions which are stated below:

I. NHPP is considered for the fault removal process.
II. The average faults detected in (,] is affected by the faults already present in the S/w system.

III. The fault removal process is imperfect i.e. during the fault removal process, there is possibility of introducing
some new faults.

IV. Testing effort consumption is assumed to be governed by Weibull distribution.
V. The concept of multiple change points is considered.

GOVERNING EQUATIONS AND ANALYSIS

The cumulative testing efforts consumed without change points in time interval (0,] is determined using

 () 1 expF K = …(1)

The current testing effort expenditure is obtained using

 () ()
d

f F
d

=

...(2)

Due to imperfect debugging, there may be the possibility of introducing some new faults with introduction rate

()b . Thus we have

() ()
()

da dm

d d

b

= ...(3)

 In the present investigation, we assume that in the time interval (0,] , the fault detection rate depends on several

factors and may change during fault debugging process at some points of time (say τj; j=1,2,...,n), which are called
the change points. At any instant of time , the fault detection rate is defined by

1, 1

1

1

(0,]

() , , 2,3,...,

,

j j j

n n

b for

b b for j n

b for

= =

 …(4)

Also, we assume that the fault introduction rate ()b changes at the change point τj; (j=1,2,...,n), where τj represents

the time epoch of the jth change. Also denote τ0=0. We define the fault introduction rate with multiple change points
during the testing of the software is by

Review of Business and Technology Research, Vol. 14, No. 2, 2017, ISSN 1941-9414

73

1, 1

1

1

0

() , , 2,3,...,

,

j j j

n n

for

for j n

for

b

b b

b

= =

 …(5)

The total faults contents by the time t is given by

1 1 1

1

1 1
1

1 1
1

() (), 0

() () () () (), , 1,2,...,

() () () (),

j

j i i i j j j
i

n

n i i i n n
i

a a m for

a a a m m for j n

a a m m for

 b

 b b b

 b b b

=

=

=

= = =

 =

 …(6)

During the software-testing, Weibull-type testing effort function is assumed tobe changed and is defined by

1

2

(1)

*
1 1 1

*
1 2 2

1

*
1 1 (1)

1

() 1 exp , 0

() 1 exp ,
()

, 1,2,...

() exp exp ,n m

j

j j
n

n n n m m m n
m

F K

F K g g
F

j n

F K g g

=

 =

 = = =

 =

 …(7)

1
where exp[].i

i i i
g

=

The fault reduction factor is also altered at change point. Thus at time t fault reduction factor µ(t) is defined by

1, 1

1

1

0

() , , 2,3,...,

,

j j j

n n

for

for j n

for

m

m m

m

= =

 …(8)

To develop the generalized software reliability growth model, we formulate the equation for the mean value function
(MVF) in time interval (0,) as-

() 1
() () () ()

()

dm
b a m

d f

 m

=

…(9)

Solving (9) by using the (4)-(8), the modified mean value function is obtained as-

1 1 1 1

* *

(1) [*()]
1 1

1

1
(1) () (1) ()

1 1
1

1

1 1
1

1

() 1 , 0
(1).

1
() () () 1 () ,

() (1)
, 2,3,...,

1
() [()

(1)

j j j j j j j j

b F

j
b F b F

j i i i j
i

j

j j

n i i
i

n

a
m e for

m a m e m e
m

for j n

m a

b m

m b m b

b

 b b
 b

 b b
b

=

=

 =

 = =
 =

=

 * *
1 1 1 1 1 1 1 1(1) () (1) ()()] 1 e ()e ,n n n n n n n n

n
b F b F

i n

n

m m

for

m b m b

 …(10)

The generalized failure intensity function () with multiple change points by incorporating imperfect debugging

and fault reduction factor is obtained using

Review of Business and Technology Research, Vol. 14, No. 2, 2017, ISSN 1941-9414

74

 () =
()dm

d

 …(11)

RELIABILITY INDICES

The software reliability during the testing phase is given by

1

1

1

1 1 1 1 1 1 1

1

1 1 1 1 1

1

2 1 2 1 2 2 2 1 1 2

2 2 2

(/) exp[{ ()}]

exp exp{ (1) } exp{(1) exp[()]
(1)

exp{(1) exp[]} , 0

exp (1) () () exp{ (1)} 1 exp[] .

exp{ (1)

R x T m T

a
b K b K T x

b K T T

a m b K g

b K

b m b m
b

b m

b b b m b

m b

=

=

2 2

2

1

2 2

2

2 2 2 2

1 2 2 2 1 1 2

2 2 2 2 2 2 2

1 2

exp[()] } exp{ (1) exp[()] }

()exp{ (1) 1 exp[] }

exp (1) exp[()] exp{ (1) exp[()] } ,

T x b K T

m b K g

b K T b K T x

T

 m b

 m b

m b m b

 …(12)

The cost of software depends on the length of testing, consumption of testing resources and types of testing
methodologies. These factors affect the quality of the software. The expected total cost is determined by

* * * *

1 2 3

1 1 1

{ (())} (()) ((())) ()
n n n

i i i i i i i i

i i i

E C F T C m F T C a m F T C F T
= = =

= …(13)

where C1i (C2i) andC*

3 are the costs of fixing a fault during the testing(operational) phase for the ith stage of
change point and cost of per unit Weibull type testing effort respectively. Here F*

i denotes the testingefforts for ith
stage during testing time T.

NUMERICAL RESULTS AND CONCLUSION

To perform the numerical simulation, we consider the software reliability for two change point and default
parameters as a=50, b1=0.5, b2=0.06, K=8, β1=0.9, β2=0.6, µ1=0.8, µ2 =0.4, γ1=0.9, γ2=0.6, η1=0.5, η2=0.6, x=0.5 and
τ1=2. The Figures 1(i-vi) reveal the numerical results for the reliability of the software with respect to testing time
‘T’ for different values of initial fault contents (a), fault detection rate for two change points (b1), testing effort
expenditure parameter (K), scale parameter (η1), shape parameter (γ1,), fault introduction rate factor (β1), fault
reduction factor (µ1) for both change points, respectively. The numerical results can be concluded with the remarks
that the reliability of the S/w is significantly improved by increasing the testing time up to a certain point; after that
it does not change. Also software reliability is lower for one change point in comparison to second stage change
point but this trend continues only for lower values of T.

In this investigation, multiple change points and Weibull testing efforts included to examine the software testing
efficiency may be helpful to design robust and cost effective software. Software reliability obtained may provide
valuable insights to the S/w manufacturer for the releasing of the S/w at appropriate time. The expected maintenance
cost during software testing phase reveals the economic aspects for every stage of the change point.

Review of Business and Technology Research, Vol. 14, No. 2, 2017, ISSN 1941-9414

75

(i) (ii)

(iii) (iv)

(v) (vi)

Figure 1(i-vi): Reliability vs testing time by varying (i) a (ii) b1 (iii) µ1 (iv) γ1 (v) β1 and (vi) η1

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

T

R

a=50 a=50

a=100 a=100

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

T

R

b1=.6 b1=.6

b1=.9 b1=.9

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

T

R

m1=.5 m1=.5

m1=.8 m1=.8

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

T

R 1=.7 1=.7

1=.9 1=.9

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

T

R

b1=.7 b1=.7

b1=.9 b1=.9

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

T

R

1=.2 1=.2

1=.5 1=.5

Review of Business and Technology Research, Vol. 14, No. 2, 2017, ISSN 1941-9414

76

REFERENCES

Catuneanu, V. M., Moldovan, C., Popentiu, Fl., & Popovivi, D. (1991). Software reliability release policy with

testing effort, Microelectronics Reliability, 31, 895-899.
Chatterjee, S. Mishra, R. B., & Alam, S. S. (2004). N-version programming with imperfect debugging, Computer

Electrical Engineering, 30, 453-463.
Cortellessa, V., Mirandola, R., & Potena, P. (2015). Managing the evolution of a software architecture at minimal

cost under performance and reliability constraints, Science of Computer Programming, 98, 439-463.
Huang, C., & Hung (2010). Software reliability analysis and assessment using queueing models with multiple

change point, Computers Mathematics with Applications, 60, 2015-2030.
Jain, M.,& Jain, A. (2013). Quasi renewal analysis of software reliability growth model incorporating testing efforts

and time delay, International Journal of Mathematics in Operational Research, 5, 721-742.
Jain, M., Manjula, T., & Gulati, T.R. (2016). Optimal release policies of delayed discrete reliability growth model

with imperfect debugging, Journal of Testing and Evaluation, 44, 1376-1382.
Kapur, P. K., & Bhalla, V. K. (1992). Optimal release policies for a flexible software reliability growth model,

Reliability Engineering and System Safety, 35, 49-54.
Kapur, P. K., & Younes, S. (1995). Modelling an imperfect debugging phenomenon in software reliability,

Microelectronics Reliability, 36, 645-650.
Kapur, P. K., Aggrawal, S., Younes, S., & Sinha, A. (1994). On a general imperfect debugging software reliability

growth model, Microelectronics Reliability, 34, 1397-1403.
Pachauri, B., Dhar, J., & Kumar, A. (2015). Incorporating inflection S-shaped fault reduction factor to enhance

software reliability growth, Applied Mathematical Modelling, 39, 1463-1469.
Pham, H. (2007). An imperfect-debugging fault detection dependent-parameter software, International Journal of

Automation and Computing, 4, 325-328.
Wang, J., Wu, Z., Shu, Y., & Zhang, Z. (2015). An imperfect software debugging model considering log-logistic

distribution fault content function, Journal of Systems and Software, 100, 167-181.
Xia, G. Zeephongsekul, P., & Kumar, S. (1993). Optimal software release policy with a learning factor for imperfect

debugging, Microelectronics Reliability, 33, 81-86.
Zeephongsekul, P. (1995). Reliability growth of a software model under imperfect debugging and generation of

errors, Microelectronics Reliability, 36, 1475-1482.

