
Review of Business and Technology Research, Vol. 14, No. 1, 2017, ISSN 1941-9414

64

HOMOMORPHIC ENCRYPTION: A SURVEY

Daniel Okunbor and Chekad Sarami

Department of Mathematics and Computer Science

Fayetteville State University

Fayetteville, NC 28301

{diokunbor, csarami}@uncfsu.edu)

Abstract:

Homomorphic encryption is an encryption algorithm that allows for computations directly on the encrypted data.

We perform important mathematical operations and analyses while the data remain encrypted. In this manner, we

eliminate the associated costs for decrypting data before performing these operations and re-encrypting afterwards.

It is argued in recent literature that this new and innovative encryption approach may ensure information security,

particularly, for encrypted data stored on clouds. With cloud computing, it is no longer necessary to retrieve

encrypted data, decrypt, perform operations and encrypt. The cloud-computing platform will have the necessary

computing infrastructure and power for performing homomorphic encryption. Homomorphic encryption eliminates

man-in-the middle attacks since it would not be necessary to move data between the cloud and the enterprise system

unless during the initial uploads and complete deletion of data from the cloud. In this paper, we would give the

historical perspective and discuss various applications of homomorphic encryption. We would present different

homomorphic encryption models as proposed in the research community. The application of homomorphic

encryption in cloud computing has been the focus and therefore, a major part of the paper will be devoted to

discussion of security of cloud computing and the attempts made to utilize homomorphic encryption as a model for

cloud computing security.

I. Introduction

The word homomorphic was first recorded in the 1800s and was coined from Greek words homos to mean

“same” and morphe to mean “form” or “shape.” It is used in mathematics to describe two related sets, that is, a

mapping from one set to the other that preserves operations on the set elements. The result obtained from applying

operations on elements of the first set can be mapped onto the result obtained from applying same operations on

elements of the second set. A homomorphism is therefore a map that inherently preserves properties between two

algebraic structures having same type. It is in this that context that linear maps of vector spaces are homomorphic.

More formally, given an operation, φ, a map 𝑔: 𝑋 → 𝑌 that preserves the operation φ of elements in both 𝑋 and

𝑌 is homomorphic if

𝑔(𝜑𝑋(𝑥1, 𝑥2, … , 𝑥𝑁)) = 𝜑𝑌(𝑔(𝑥1), 𝑔(𝑥2), … , 𝑔(𝑥𝑁)), 𝑓𝑜𝑟 𝑥𝑘 ∈ 𝑋, 𝑔(𝑥𝑘) ∈ 𝑌

Review of Business and Technology Research, Vol. 14, No. 1, 2017, ISSN 1941-9414

65

In algebra, groups (a set consisting of identity and one operation and its inverse) and rings (a set consisting of

identity with binary operations and inverse operations) are known to possess homomorphic property. Maps from one

group (or ring) to another group (or ring) preserve the operations. This is probably one for the motivations for the

adoption of homomorphism in encryption. Most cryptographic algorithms are based on the underlying algebraic

concepts of groups and rings.

The idea of homomorphic for use in encryption was first introduced in 1978 in a seminal paper by Ronald

Rivest, Leonald Adleman and Michael Dertouzos entitled “On Data Banks and Privacy Homomorphisms” (Rivest,

Adleman and Dertouzos, 1978). Focusing on privacy of sensitive data, particularly customer information stored by a

loan company that provides a time-shared service, they explained that traditionally, if a customer data is stored in an

encrypted form, to perform operations on them, they must be decrypted. This, they claimed is a limitation on the

encryption system. They proposed the use of a special privacy homomorphism to encrypt its data so that the time-

shared service system can operate on the data without the necessity of decrypting it first. This is what gave birth to

homomorphic encryption. Homomorphic encryption is one in which given the encryption algorithm ϕ and its inverse

(decryption algorithm) 𝜙−1 , computations based on operation φ are done on 𝑌 = 𝜙(𝑋) so that 𝜙−1(𝜑(𝑌)) =

 𝜑(𝑋). The requirements are that ϕ and 𝜙−1 are easily computable; knowledge of ϕ and/or some 𝑥𝜖𝑋 should not

reveal 𝜙−1 (chosen plaintext or ciphertext only attacks); and the operation φ is computationally efficient. While

Rivest, Adleman and Dertouzos (1978) proposed a few homomorphic encryptions including the RSA, they

cautioned that their proposed approaches are susceptible to a variety of attacks and therefore not suitable for privacy

homomorphism. Added to the concerns for the proposed system was their practicability.

This early lack of euphemism for homomorphic encryption might have contributed to the limited research

on the topic in the 80s and 90s. Although, there were anecdote of research in homomorphic encryption in the 80s

and 90s as will be described in subsequent sections, rapid research interest was not until 2009 when Gentry in his

doctoral thesis presented the practicality of homomorphic encryption or what is termed fully homomorphic

encryption (Gentry, 2009). The growing concerns for security in cloud computing also provide a strong precipitate

for homomorphic encryption. A lot of what is available on homomorphic encryption in the literature is still

theoretical, although, there are computing libraries that provide support for homomorphic encryption. There is also a

growing research in quantum homomorphic encryption for enabling quantum computation on encrypted quantum

data.

This paper will present the historical perspective and various homomorphic encryption schemes in Section II. In

Section III, we would describe existing techniques, including partially, “somewhat” and fully homomorphic

encryptions and their implementations. As indicated earlier, cloud computing is clearly a good candidate for

homomorphic encryption. Therefore, Section IV will focus on existing implementations of homomorphic encryption

in cloud computing. Section V will summarize and provide concluding remarks.

Review of Business and Technology Research, Vol. 14, No. 1, 2017, ISSN 1941-9414

66

II. Historical Perspective

As discussed in Section II, the concept of homomorphism dates to the 1800s and was used to describe a variety

of algebraic constructs, such as groups, rings, and vector spaces. Its use in cryptography became visible in the paper

written by Rivest, Adleman and Dertouzos (1978), in which they proposed few homomorphic cipher systems. A

homomorphic encryption is defined as one that permits computations on ciphertexts, producing results which when

encrypted correspond to computations performed on plaintexts, see the Figure 1 below for a schematic

representation (Crane, 2017).

Figure 1: Schematic Representation of Homomorphic Encryption

Mathematically, we have that, given an encryption algorithm scheme consisting of (𝑃, 𝐶, 𝐾, 𝐸, 𝐷), where

𝑃, 𝐶 are plaintext and ciphertext spaces that form groups (𝑃, 𝜊) and (𝐶, �̇�), respectively, where 𝜊 and �̇� are

operations, 𝐾 is the key space and 𝐸, 𝐷 are encryption and decryption algorithms respectively. For all

𝑝1, 𝑝2𝜖𝑃 𝑎𝑛𝑑 𝑘𝜖𝐾, if

𝐸𝑘(𝑝1)�̇�𝐸𝑘(𝑝2) = 𝐸𝑘(𝑝1𝜊𝑝2)

holds, the encryption scheme is homomorphic (Yi, Paulet and Bertino, 2014). In addition to the popular Rivest,

Shamir and Adelman (RSA) encryption, Rivest, Adleman and Dertouzos described four other homomorphic

encryptions. Two of these encryptions are partially homomorphic (only for addition or multiplication) and three

are fully homomorphic (that is, a homomorphic encryption that is valid for addition and multiplication). The

discovery of Rivest, Adleman and Dertouzos (1978) is the foundation of subsequent homomorphic encryption

schemes. The encryption scheme (GM encryption scheme) developed by Shafi Godlwasser and Silvio Micali in

1982 and based on factorization of large numbersnis partially homomorphic with 𝜊 𝑎𝑛𝑑 �̇� being addition and

multiplication, respectively. The Elgamal encryption scheme, invented by Taher Elgamal in 1985 in partially

homomorphic for multiplication only. Other fully homomorphic encryptions, include those developed by Boneh,

Goh, and Nissim in 1998 called BGN encryption scheme and by Pascal Paillier in 1999 called Paillier encryption

scheme (Yi, Paulet and Bertino, 2014).

The revolutionary work of Gentry in his doctoral thesis spurred the surge for interests in homomorphic

encryption. He used the lattice-based cryptographic approach to model fully homomorphic encryption (Gentry,

2009). His encryption scheme is considered as the first implementable fully homomorphic encryption and are

Review of Business and Technology Research, Vol. 14, No. 1, 2017, ISSN 1941-9414

67

categorized as “somewhat” or bootstrappable encryption. The designation “somewhat” or bootstrappable is due to

the minimal “noise” from these homomorphic encryption schemes. Several variants of original Gentry’s encryption

scheme are now available (Gentry and Halevi, 2010; Smart and Vercauteren, 2010; van Dijk, Gentry, Halevi and

Vaikunanatha, 2010). Other fully homomorphic encryptions, include those developed by Brakerski, Gentry, and

Vaikuntanathan (2012), Brakerski and Vaikuntanathan (2011), and Brakerski(2012). These encryption schemes have

better efficiency and their security is based on the concept of learning with errors (LWE) problem prevalent in

machine learning.

III. Existing Homomorphic Encryptions

As described in Section II, a homomorphic encryption is based on key generation, encryption, homomorphic

computations and decryption. Encryption, as we know it is categorized into symmetric (secret key encryption) such

as Data Encryption Standard (DES) and Advanced Encryption Standard (AES) and asymmetric (public key

encryption) such as RSA, Elgamal and Elliptic Curves. It is a well-known fact that symmetric encryption is

computationally more efficient than asymmetric, however, they suffer the key exchange problem. The public key

encryption while relatively less computationally efficient solves the key exchange problem as espoused by Diffie

and Hellman. and therefore, in practice the symmetric encryption is used in combination with the public key

encryption. In this respect, the public key encryption is used for exchanging the symmetric encryption secret through

the unsecure communication channel. However, the homomorphic encryption described here is not based on this

principle. A homomorphic encryption must be such that computations are easily performed in the encrypted mode.

Although, most of the homomorphic encryption algorithms are based on public key encryption, they are some

proposals for the homomorphic encryption for AES at the circuitry level (Gentry, Halevi and Smart, 2012). This

paper focuses mostly on public key encryption. In what follows, we would present some of the existing examples of

homomorphic encryption.

a. RSA Encryption: The public key 𝑘 = (𝑛, 𝑒) and for 𝑝1 , 𝑝2𝜖𝑃

𝐸𝑘(𝑝1). 𝐸𝑘(𝑝2) = 𝑝1
𝑒 . 𝑝2

𝑒(𝑚𝑜𝑑 𝑛) = (𝑝1. 𝑝2)𝑒(𝑚𝑜𝑑 𝑛) = 𝐸𝑘(𝑝1. 𝑝2)

Therefore, RSA has multiplicative homomorphic property only and it is not fully homomorphic. This is an

unpadded RSA that is known to be insecure.

b. Paillier Encryption: The public key 𝑘 = (𝑛, 𝑔) and for 𝑝1, 𝑝2𝜖𝑃

𝐸𝑘(𝑝1). 𝐸𝑘(𝑝2) = 𝑔𝑝1 . 𝑔𝑝2(𝑚𝑜𝑑 𝑛) = 𝑔𝑝1+𝑝2(𝑚𝑜𝑑 𝑛) = 𝐸𝑘(𝑝1 + 𝑝2)

Therefore, Paillier encryption has additive homomorphic property. Although, it is claimed that it has

multiplicative property if an encrypted plaintext is raised to the power another plaintext 𝑚𝑜𝑑(𝑛2).

c. Goldwasser-Micali (GM) Encryption: In the GM encryption, the message is encoded into bit string, 𝑝 =

(𝑏1𝑏2𝑏3 ··· 𝑏𝑙) and the bits are encrypted one at a time to obtain the ciphertext: 𝑐 = (𝑐1𝑐2𝑐3 ∙∙∙ 𝑐𝑙). The public

key: 𝑘 = (𝑎, 𝑁), where 𝑎 is a function of two large 𝑁 = 𝑞𝑟 and 𝑚𝑙 are random numbers such that

gcd(𝑁, 𝑚𝑙) = 1 and

(𝑎𝑞

𝑞−1
2 , 𝑎𝑟

𝑟−1
2) = −1(𝑚𝑜𝑑(𝑞), 𝑚𝑜𝑑(𝑟))

Review of Business and Technology Research, Vol. 14, No. 1, 2017, ISSN 1941-9414

68

𝐸𝑘(𝑐𝑖) ∙ 𝐸𝑘(𝑐𝑗) = (𝑚𝑖
2 ∙ 𝑎𝑏𝑖) ∙ (𝑚𝑗

2 ∙ 𝑎𝑏𝑗) (𝑚𝑜𝑑 𝑁) = (𝑚𝑖 ∙ 𝑚𝑗)
2

∙ 𝑎(𝑏𝑖+𝑏𝑗) (𝑚𝑜𝑑 𝑁) = 𝐸𝑘(𝑏𝑖 + 𝑏𝑗)

Therefore, the GM has additive homomorphic property.

d. Boneh-Goh-Nissim Encryption (BGN). The public key 𝑘 = {𝑁, 𝐺, 𝐺1, 𝑒, 𝑔, ℎ}, where 𝑁 = 𝑞1𝑞2 is the order of

the cyclic group G and the map 𝑒: 𝐺 × 𝐺 → 𝐺1 and 𝑔 𝑎𝑛𝑑 𝑢 are random generators and 𝑠𝑒𝑡 ℎ = 𝑢𝑞2 . The

plaintext must be encoded so in the set {0,1,2, … , 𝑇}, 𝑇 < 𝑞2. To encrypt a message 𝑝, pick 𝑟 and

𝑐 = 𝑔𝑝ℎ𝑟 . Therefore

𝐸𝑘(𝑝1) ∙ 𝐸𝑘(𝑝2) = 𝑔𝑝1ℎ𝑟1 ∙ 𝑔𝑝2ℎ𝑟2 = 𝑔𝑝1+𝑝2ℎ𝑟1+𝑟2 = 𝐸𝑘(𝑝1 + 𝑝2)

Therefore, BGN has additive homomorphic property.

e. Dijk, Gentry, Halevi and Vaikuntanathan (DGHV) Encryption: This scheme is based on Example 5 of the

homomorphic encryptions in Rivest, Adelman and Dertouzos (1978). Assume that the message 𝑚 ∈ {0,1} and

let 𝑝 be the secret-key and 𝑞 𝑎𝑛𝑑 𝑟 are random numbers, then the encryption and decryption are

𝑐 = 𝑞 ∙ 𝑝 + 2𝑟 + 𝑚, 𝑚 = (𝑐 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 2.

This is fully homomorphic, since, we can show that,

c1 + c2 = q′ · p + 2r′ + m1 + m2 and c1 · c2 = q′′ · p + 2r ′′ + m1 · m2

To generalize, compute a set of 𝜏encryptions of 0’s and define the public key using

xi = qi · p + 2ri

and the encryption is

𝑐 = 𝑚 + 2𝑟 + ∑ 𝜀𝑖

𝜏

1

· 𝑥𝑖 , 𝜀𝑖 ∈ {0,1}

The computational “noise” that is associated with DGHV scheme and other homomorphic encryption schemes

resulted in different implementations and variants. The “somewhat” homomorphic encryption applies smaller

degree polynomial homomorphically to the ciphertexts. The “squashed” homomorphic encryption applies

smaller degree polynomials for decryption.

IV. Cloud Computing and Homomorphic Encryption

There are several applications of homomorphic encryption, such as e-voting and computing on the cloud. In the

case of e-voting, voters encrypt their votes and aggregate results are computed from the encrypted votes using any of

the homomorphic encryption schemes as appropriate without knowing how the voter voted or knowing the voter’s

information.

In cloud computing, the cloud receives data in encrypted form and does not know the plaintext data (𝑚). The

cloud can perform computations 𝑓(𝑚) on the ciphertexts without knowing 𝑚. Typically, these computations are

written in Boolean circuits using XOR and AND operations, since the operations XOR and AND provide

homomorphic maps, the ciphertext of the computed operation is easily decrypted by the user to obtain the

corresponding value in plaintext. Clearly, the user has the secret key and only the public key is made available to the

Review of Business and Technology Research, Vol. 14, No. 1, 2017, ISSN 1941-9414

69

cloud provider. The computations referred here may include computing aggregates, searching and editing data on

the cloud without the cloud providers learning anything about the data.

V. Conclusion

In this paper, we present the history of homomorphic encryption and describe some of the existing homomorphic

encryption schemes, including those that are partially and fully homomorphic in nature. A fully homomorphic

encryption has additive and multiplicative properties. The DGHV scheme has received an extensive coverage due to

its practicability. The DGHV scheme has several variants and implementations and there are available as software

libraries such as HELib that implements DGHV schemes. The Boolean circuitry nature of DGHV scheme makes it

very attractive for cloud computing.

References

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. 2012. (Leveled) fully homomorphic encryption without

bootstrapping, Procs. of the 3rd Innovations in Theoretical Computer Science Conference, ACM, pp. 309–325.

Crane, S. 2017. Implementing a Simple Homomorphic Encryption Scheme Stephen Crane - Cal Poly Pomona

http://www.cpp.edu/~honorscollege/documents/convocation/SCI/CS_Crane.pdf (Presentation at the Kellog Honors

College Convocation, California Polytechnic).

Brakerski, Z., and Vaikuntanathan, V. 2011. Efficient fully homomorphic encryption from (standard) LWE, 2011

IEEE 52nd Annual Symposium on Foundations of Computer Sci., IEEE Computer Soc., Los Alamitos. pp. 97–106.

van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V. 2010. Fully homomorphic encryption over the

integers, Advances in cryptology.Lecture Notes in Comput. Sci., vol. 6110, Springer, Berlin, pp. 24–43.

Smart, N.P.,and Vercauteren, F. 2010. Fully homomorphic encryption with relatively small key and ciphertext sizes,

Public key cryptography—PKC 2010, Lecture Notes in Comput. Sci., vol. 6056, Springer, Berlin, pp. 420–443.

Rivest, R., Adleman, L., and Dertouzos, M. 1978. On data banks and privacy homomorphisms. Foundations of

secure computation 4, no. 11: 169-180.

Coron, J., Mandal, A., Naccache, D., and Tibouchi, M. 2011. Fully homomorphic encryption over the integers with

shorter public keys, Advances in cryptology. Lecture Notes in Comput. Sci., vol. 6841, Springer, pp. 487–504.

Gentry, C. 2009. Fully Homomorphic Encryption Using Ideal Lattices, in Procs. 41st Annual ACM Symposium on

Theory of Computing. See, A fully homomorphic encryption scheme, Ph.D. thesis, Stanford University, 2009.

Yi, X., Paulet, P. and Bertino, E. 2014. Homomorphic Encryption and Applications, Springer Briefs in Comp. Sci.

Gentry, C., and Halevi, S. 2011. Implementing Gentry’s fully-homomorphic encryption scheme, Advances in

cryptology—EUROCRYPT 2011, Lecture Notes in Comput. Sci., vol. 6632, Springer, Heidelberg, pp. 129–148.

Gentry, C., Halevi,S., and Smart N. 2012. Fully homomorphic encryption with polylog overhead, Advances in

cryptology—EUROCRYPT 2012, Lecture Notes in Comput. Sci., vol. 7237, Springer, Heidelberg, pp. 465–482.

http://www.cpp.edu/~honorscollege/documents/convocation/SCI/CS_Crane.pdf

