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Abstract:  

Homomorphic encryption is an encryption algorithm that allows for computations directly on the encrypted data. 

We perform important mathematical operations and analyses while the data remain encrypted.  In this manner, we 

eliminate the associated costs for decrypting data before performing these operations and re-encrypting afterwards. 

It is argued in recent literature that this new and innovative encryption approach may ensure information security, 

particularly, for encrypted data stored on clouds. With cloud computing, it is no longer necessary to retrieve 

encrypted data, decrypt, perform operations and encrypt. The cloud-computing platform will have the necessary 

computing infrastructure and power for performing homomorphic encryption. Homomorphic encryption eliminates 

man-in-the middle attacks since it would not be necessary to move data between the cloud and the enterprise system 

unless during the initial uploads and complete deletion of data from the cloud. In this paper, we would give the 

historical perspective and discuss various applications of homomorphic encryption. We would present different 

homomorphic encryption models as proposed in the research community.  The application of homomorphic 

encryption in cloud computing has been the focus and therefore, a major part of the paper will be devoted to 

discussion of security of cloud computing and the attempts made to utilize homomorphic encryption as a model for 

cloud computing security.  

 

I. Introduction 

The word homomorphic was first recorded in the 1800s and was coined from Greek words homos to mean 

“same” and morphe to mean “form” or “shape.” It is used in mathematics to describe two related sets, that is, a 

mapping from one set to the other that preserves operations on the set elements.  The result obtained from applying 

operations on elements of the first set can be mapped onto the result obtained from applying same operations on 

elements of the second set. A homomorphism is therefore a map that inherently preserves properties between two 

algebraic structures having same type. It is in this that context that linear maps of vector spaces are homomorphic.  

More formally, given an operation, φ, a map 𝑔: 𝑋 → 𝑌 that preserves the operation φ of elements in both 𝑋 and 

𝑌 is homomorphic if  

𝑔(𝜑𝑋(𝑥1, 𝑥2, … , 𝑥𝑁)) =  𝜑𝑌(𝑔(𝑥1), 𝑔(𝑥2), … , 𝑔(𝑥𝑁)), 𝑓𝑜𝑟 𝑥𝑘 ∈ 𝑋, 𝑔(𝑥𝑘) ∈ 𝑌 
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In algebra, groups (a set consisting of identity and one operation and its inverse) and rings (a set consisting of 

identity with binary operations and inverse operations) are known to possess homomorphic property. Maps from one 

group (or ring) to another group (or ring) preserve the operations. This is probably one for the motivations for the 

adoption of homomorphism in encryption. Most cryptographic algorithms are based on the underlying algebraic 

concepts of groups and rings.  

The idea of homomorphic for use in encryption was first introduced in 1978 in a seminal paper by Ronald 

Rivest, Leonald Adleman and Michael Dertouzos entitled “On Data Banks and Privacy Homomorphisms” (Rivest, 

Adleman and Dertouzos, 1978). Focusing on privacy of sensitive data, particularly customer information stored by a 

loan company that provides a time-shared service, they explained that traditionally, if a customer data is stored in an 

encrypted form, to perform operations on them, they must be decrypted. This, they claimed is a limitation on the 

encryption system. They proposed the use of a special privacy homomorphism to encrypt its data so that the time-

shared service system can operate on the data without the necessity of decrypting it first. This is what gave birth to 

homomorphic encryption. Homomorphic encryption is one in which given the encryption algorithm ϕ and its inverse 

(decryption algorithm) 𝜙−1 , computations based on operation φ are done on 𝑌 = 𝜙(𝑋) so that 𝜙−1(𝜑(𝑌)) =

 𝜑(𝑋).  The requirements are that ϕ and 𝜙−1 are easily computable; knowledge of ϕ and/or some 𝑥𝜖𝑋 should not 

reveal 𝜙−1 (chosen plaintext or ciphertext only attacks); and the operation φ is computationally efficient. While 

Rivest, Adleman and Dertouzos (1978) proposed a few homomorphic encryptions including the RSA, they 

cautioned that their proposed approaches are susceptible to a variety of attacks and therefore not suitable for privacy 

homomorphism. Added to the concerns for the proposed system was their practicability.  

This early lack of euphemism for homomorphic encryption might have contributed to the limited research 

on the topic in the 80s and 90s. Although, there were anecdote of research in homomorphic encryption in the 80s 

and 90s as will be described in subsequent sections, rapid research interest was not until 2009 when Gentry in his 

doctoral thesis presented the practicality of homomorphic encryption or what is termed fully homomorphic 

encryption (Gentry, 2009). The growing concerns for security in cloud computing also provide a strong precipitate 

for homomorphic encryption. A lot of what is available on homomorphic encryption in the literature is still 

theoretical, although, there are computing libraries that provide support for homomorphic encryption. There is also a 

growing research in quantum homomorphic encryption for enabling quantum computation on encrypted quantum 

data. 

This paper will present the historical perspective and various homomorphic encryption schemes in Section II. In 

Section III, we would describe existing techniques, including partially, “somewhat” and fully homomorphic 

encryptions and their implementations. As indicated earlier, cloud computing is clearly a good candidate for 

homomorphic encryption. Therefore, Section IV will focus on existing implementations of homomorphic encryption 

in cloud computing. Section V will summarize and provide concluding remarks. 
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II. Historical Perspective  

As discussed in Section II, the concept of homomorphism dates to the 1800s and was used to describe a variety 

of algebraic constructs, such as groups, rings, and vector spaces. Its use in cryptography became visible in the paper 

written by Rivest, Adleman and Dertouzos (1978), in which they proposed few homomorphic cipher systems. A 

homomorphic encryption is defined as one that permits computations on ciphertexts, producing results which when 

encrypted correspond to computations performed on plaintexts, see the Figure 1 below for a schematic 

representation (Crane, 2017). 

 

Figure 1: Schematic Representation of Homomorphic Encryption 

Mathematically, we have that, given an encryption algorithm scheme consisting of (𝑃, 𝐶, 𝐾, 𝐸, 𝐷), where 

𝑃, 𝐶 are plaintext and ciphertext spaces that form groups (𝑃, 𝜊) and (𝐶, �̇�), respectively, where 𝜊 and �̇� are 

operations,  𝐾 is the key space and 𝐸, 𝐷 are encryption and decryption algorithms respectively. For all 

𝑝1, 𝑝2𝜖𝑃 𝑎𝑛𝑑 𝑘𝜖𝐾, if 

𝐸𝑘(𝑝1)�̇�𝐸𝑘(𝑝2) = 𝐸𝑘(𝑝1𝜊𝑝2) 

holds, the encryption scheme is homomorphic (Yi, Paulet and Bertino, 2014). In addition to the popular Rivest, 

Shamir and Adelman (RSA) encryption, Rivest, Adleman and Dertouzos described four other homomorphic 

encryptions. Two of these encryptions are partially homomorphic (only for addition or multiplication) and three 

are fully homomorphic (that is, a homomorphic encryption that is valid for addition and multiplication). The 

discovery of Rivest, Adleman and Dertouzos (1978) is the foundation of subsequent homomorphic encryption 

schemes. The encryption scheme (GM encryption scheme) developed by Shafi Godlwasser and Silvio Micali in 

1982 and based on factorization of large numbersnis partially homomorphic with 𝜊 𝑎𝑛𝑑 �̇� being addition and 

multiplication, respectively. The Elgamal encryption scheme, invented by Taher Elgamal in 1985 in partially 

homomorphic for multiplication only. Other fully homomorphic encryptions, include those developed by Boneh, 

Goh, and Nissim in 1998 called BGN encryption scheme and by Pascal Paillier in 1999 called Paillier encryption 

scheme (Yi, Paulet and Bertino, 2014).   

The revolutionary work of Gentry in his doctoral thesis spurred the surge for interests in homomorphic 

encryption. He used the lattice-based cryptographic approach to model fully homomorphic encryption (Gentry, 

2009). His encryption scheme is considered as the first implementable fully homomorphic encryption and are 
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categorized as “somewhat” or bootstrappable encryption. The designation “somewhat” or bootstrappable is due to 

the minimal “noise” from these homomorphic encryption schemes. Several variants of original Gentry’s encryption 

scheme are now available (Gentry and Halevi, 2010; Smart and Vercauteren, 2010; van Dijk, Gentry, Halevi and 

Vaikunanatha, 2010). Other fully homomorphic encryptions, include those developed by Brakerski, Gentry, and 

Vaikuntanathan (2012), Brakerski and Vaikuntanathan (2011), and Brakerski(2012). These encryption schemes have 

better efficiency and their security is based on the concept of learning with errors (LWE) problem prevalent in 

machine learning. 

III. Existing Homomorphic Encryptions 

As described in Section II, a homomorphic encryption is based on key generation, encryption, homomorphic 

computations and decryption. Encryption, as we know it is categorized into symmetric (secret key encryption) such 

as Data Encryption Standard (DES) and Advanced Encryption Standard (AES) and asymmetric (public key 

encryption) such as RSA, Elgamal and Elliptic Curves. It is a well-known fact that symmetric encryption is 

computationally more efficient than asymmetric, however, they suffer the key exchange problem. The public key 

encryption while relatively less computationally efficient solves the key exchange problem as espoused by Diffie 

and Hellman. and therefore, in practice the symmetric encryption is used in combination with the public key 

encryption. In this respect, the public key encryption is used for exchanging the symmetric encryption secret through 

the unsecure communication channel. However, the homomorphic encryption described here is not based on this 

principle.  A homomorphic encryption must be such that computations are easily performed in the encrypted mode. 

Although, most of the homomorphic encryption algorithms are based on public key encryption, they are some 

proposals for the homomorphic encryption for AES at the circuitry level (Gentry, Halevi and Smart, 2012). This 

paper focuses mostly on public key encryption. In what follows, we would present some of the existing examples of 

homomorphic encryption. 

a. RSA Encryption: The public key 𝑘 = (𝑛, 𝑒) and for 𝑝1 , 𝑝2𝜖𝑃 

𝐸𝑘(𝑝1). 𝐸𝑘(𝑝2) = 𝑝1
𝑒 . 𝑝2

𝑒(𝑚𝑜𝑑 𝑛) = (𝑝1. 𝑝2)𝑒(𝑚𝑜𝑑 𝑛) = 𝐸𝑘(𝑝1. 𝑝2) 

Therefore, RSA has multiplicative homomorphic property only and it is not fully homomorphic. This is an 

unpadded RSA that is known to be insecure. 

b. Paillier Encryption:  The public key 𝑘 = (𝑛, 𝑔) and for 𝑝1, 𝑝2𝜖𝑃 

𝐸𝑘(𝑝1). 𝐸𝑘(𝑝2) = 𝑔𝑝1 . 𝑔𝑝2(𝑚𝑜𝑑 𝑛) = 𝑔𝑝1+𝑝2(𝑚𝑜𝑑 𝑛) = 𝐸𝑘(𝑝1 + 𝑝2) 

Therefore, Paillier encryption has additive homomorphic property. Although, it is claimed that it has 

multiplicative property if an encrypted plaintext is raised to the power another plaintext 𝑚𝑜𝑑(𝑛2). 

c. Goldwasser-Micali (GM) Encryption: In the GM encryption, the message is encoded into bit string, 𝑝 =

(𝑏1𝑏2𝑏3 ··· 𝑏𝑙) and the bits are encrypted one at a time to obtain the ciphertext: 𝑐 = (𝑐1𝑐2𝑐3 ∙∙∙ 𝑐𝑙). The public 

key: 𝑘 = (𝑎, 𝑁), where 𝑎 is a function of two large 𝑁 = 𝑞𝑟 and 𝑚𝑙 are random numbers such that 

gcd(𝑁, 𝑚𝑙) = 1  and  

(𝑎𝑞 

𝑞−1
2 , 𝑎𝑟

𝑟−1
2 ) = −1(𝑚𝑜𝑑(𝑞), 𝑚𝑜𝑑(𝑟)) 
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𝐸𝑘(𝑐𝑖) ∙ 𝐸𝑘(𝑐𝑗) = (𝑚𝑖
2 ∙ 𝑎𝑏𝑖) ∙ (𝑚𝑗

2 ∙ 𝑎𝑏𝑗) (𝑚𝑜𝑑 𝑁) = (𝑚𝑖 ∙ 𝑚𝑗)
2

∙ 𝑎(𝑏𝑖+𝑏𝑗)  (𝑚𝑜𝑑 𝑁) =  𝐸𝑘(𝑏𝑖 + 𝑏𝑗) 

 

Therefore, the GM has additive homomorphic property. 

d. Boneh-Goh-Nissim Encryption (BGN). The public key 𝑘 = {𝑁, 𝐺, 𝐺1, 𝑒, 𝑔, ℎ}, where 𝑁 = 𝑞1𝑞2 is the order of 

the cyclic group G and the map 𝑒: 𝐺 × 𝐺 → 𝐺1 and 𝑔 𝑎𝑛𝑑 𝑢 are random generators and  𝑠𝑒𝑡 ℎ = 𝑢𝑞2 . The 

plaintext must be encoded so in the set {0,1,2, … , 𝑇}, 𝑇 < 𝑞2. To encrypt a message 𝑝, pick 𝑟 and 

𝑐 = 𝑔𝑝ℎ𝑟 . Therefore 

𝐸𝑘(𝑝1) ∙ 𝐸𝑘(𝑝2) = 𝑔𝑝1ℎ𝑟1  ∙ 𝑔𝑝2ℎ𝑟2 = 𝑔𝑝1+𝑝2ℎ𝑟1+𝑟2 = 𝐸𝑘(𝑝1 + 𝑝2) 

Therefore, BGN has additive homomorphic property. 

e. Dijk, Gentry, Halevi and Vaikuntanathan (DGHV) Encryption: This scheme is based on Example 5 of the 

homomorphic encryptions in Rivest, Adelman and Dertouzos (1978). Assume that the message 𝑚 ∈ {0,1} and 

let 𝑝 be the secret-key and 𝑞 𝑎𝑛𝑑 𝑟 are random numbers, then the encryption and decryption are 

𝑐 = 𝑞 ∙ 𝑝 + 2𝑟 + 𝑚, 𝑚 = (𝑐 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 2. 

This is fully homomorphic, since, we can show that, 

c1 + c2 =  q′ ·  p +  2r′ + m1  +  m2  and c1  ·  c2  =  q′′ ·  p +  2r ′′ + m1  ·  m2   

To generalize, compute a set of 𝜏encryptions of 0’s and define the public key using 

xi  =  qi  ·  p +  2ri 

and the encryption is 

𝑐 = 𝑚 + 2𝑟 +  ∑ 𝜀𝑖

𝜏

1

· 𝑥𝑖 ,  𝜀𝑖 ∈ {0,1} 

The computational “noise” that is associated with DGHV scheme and other homomorphic encryption schemes 

resulted in different implementations and variants. The “somewhat” homomorphic encryption applies smaller 

degree polynomial homomorphically to the ciphertexts. The “squashed” homomorphic encryption applies 

smaller degree polynomials for decryption.  

 

IV. Cloud Computing and Homomorphic Encryption 

There are several applications of homomorphic encryption, such as e-voting and computing on the cloud. In the 

case of e-voting, voters encrypt their votes and aggregate results are computed from the encrypted votes using any of 

the homomorphic encryption schemes as appropriate without knowing how the voter voted or knowing the voter’s 

information.  

In cloud computing, the cloud receives data in encrypted form and does not know the plaintext data (𝑚). The 

cloud can perform computations 𝑓(𝑚)  on the ciphertexts without knowing 𝑚. Typically, these computations are 

written in Boolean circuits using XOR and AND operations, since the operations XOR and AND provide 

homomorphic maps, the ciphertext of the computed operation is easily decrypted by the user to obtain the 

corresponding value in plaintext. Clearly, the user has the secret key and only the public key is made available to the 
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cloud provider. The computations referred here may include computing aggregates, searching and editing data on 

the cloud without the cloud providers learning anything about the data.  

V. Conclusion 

In this paper, we present the history of homomorphic encryption and describe some of the existing homomorphic 

encryption schemes, including those that are partially and fully homomorphic in nature. A fully homomorphic 

encryption has additive and multiplicative properties. The DGHV scheme has received an extensive coverage due to 

its practicability. The DGHV scheme has several variants and implementations and there are available as software 

libraries such as HELib that implements DGHV schemes. The Boolean circuitry nature of DGHV scheme makes it 

very attractive for cloud computing. 
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