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ABSTRACT 

 

Induction motors consume the maximum percentage of energy in industrial facilities. This consumption is dependent 

on operating conditions (imposed by internal parameters) of the motor. Obviated by the need to avoid the hard-to-

perform experimental tests & the tedium of numerical methods, the parameters of induction motor can be estimated 

by minimization of  normalized squared error function between the manufacturer’s and the estimated data. In this 

paper, a novel chaos embedded firefly algorithm is used to estimate equivalent circuit parameters of an induction 

motor using the motor name plate data & its performance characteristics. Comparison of performance of standard 

firefly algorithm with chaos embedded firefly algorithm using different chaotic sequences has been made. Results 

show that the use of chaotic sequences in firefly algorithm improves the overall parameter estimation and can be 

used effectively for energy management system of induction motor, thus resulting in saving of overall energy in an 

industry. 
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INTRODUCTION   

Environmental issues caused by the overuse of electrical energy have attracted the researchers towards improving 

the efficiency of machinery as well as elements having high level of consumption of electrical energy (Omar Avalos 

et. al., 2016). Due to their less price and ruggedness, induction motors are being preferred by most of the industries. 

Nearly 60% of electric energy in the industries is changed into the mechanical energy by using induction motors 

mounted in fans, machine tools, pumps and adjustable speed drives (V.P. Sakthivel et. al., 2010). Hence, researchers 

are increasingly concentrating on developing models and estimation of parameters of induction motors(Huynh and 

Dunnigan, 2010).  

Equivalent circuit parameters of induction motors (reactance and resistances of rotor and stator (including the 

magnetizing branches)) are normally determined by using no load tests and locked-rotor tests. But, these techniques 

require experimental studies; that are hard to perform. Another option is to use numerical methods, but, these are 

generally tedious. In literature, induction motor parameter estimation has been reported by using least square 

technique (Y. Koubaa, 2006), Kalman filter (Kumar, Prakash et. al., 2011), artificial neural networks (Wishart, R.G. 

Harley, 1995), neuro- fuzzy techniques (Desouza Ribeiro et. al., 1999), etc.  

Recently, evolutionary algorithms such as genetic algorithms (Mohammadi and Akhavan, 2014), particle swarm 

optimization (Huynh and Dunnigan, 2010; Sakthivelet. al., 2010), shuffled frog-leaping algorithm (Gomez-Gonzalez 

et. al., 2013), gravitational search algorithm (Omar Avalos et. al., 2016), artificial immune system (V.P. Sakthivel et. 

al., 2010), Artificial Bee Colony Algorithm (Abro and Mohmad-Saleh, 2011), bacterial foraging algorithm 

(Sakthivel, R. Bhuvaneswari and S. Subramanian, 2011), differential evolution (Giri, A. Chowdhary and Ghosh, 

2010), ant colony optimization (Chen et. al., 2008), big bang-big crunch (Erol and Eksin, 2006), etc. have been 

proposed to solve the problem of induction motor parameter estimation.  

Firefly algorithm, a member of the family of swarm intelligence algorithms was introduced in 2008 (Fister Jr., 

Percet. al., 2015; Xin-She Yang, 2009).  Since then, a number of its modified versions were suggested and applied 

for getting the efficient and fast solutions of multimodal optimization (Xin-She Yang, 2009), continuous 

optimization (Xin-She Yang, 2010), constrained optimization(Szymon Lukasik, Slawomir Zak, 2009) and real-

world problems (Saini and Saini, 2012). Some versions of firefly algorithm have also used chaotic maps (Gandomi, 

2013).   
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Chaotic approach for optimization is able to bypass local optima stagnation in contrast to the conventional 

approaches. Taking advantage of the ergodic and stochastic properties of chaotic maps, a number of chaos-

embedded optimization algorithms have been proposed and hybridization of chaotic search with other techniques 

has been done by a few researchers (Saini and Saini, 2012; Liu, Wang et. al., 2005; Sneh Lata and Sanju Saini, 

2013; Chen and Yu, 2008; Alatas et.al., 2009; Wei et.a.l., 2011). In this work, chaotic search is embedded in a novel 

manner in a firefly optimization algorithm to improve the latter’s capabilities to optimize the parameters of 

equivalent circuit of an induction motor. It utilizes chaotic sequences to improve the efficiency of search process.  

Rest of the paper is organized as follows:  Details of the design problem is given in the Section 2. A review of 

the conventional firefly algorithm is given in Section 3. In next section, chaos embedded firefly algorithm using 

chaotic sequences is explained. Further, simulation results have been given followed by conclusions & list of 

references. 

 

DESIGN PROBLEM 

As induction motor parameters can not be measured directly, identification techniques are commonly used to 

estimate them. Here. induction motor’s behavior is represented by the equivalent (nonlinear) circuits (Omar Avalos 

et. al., 2016)& the problem of parameter’s estimation is converted to a multidimensional problem of optimization. 

Objective becomes to minimize error in between the manufacturer’s and estimated data by adjustment of equivalent 

circuit parameters.  

 Five main parameters of steady state equivalent circuit of a single phase induction motor are rotor and stator 

resistances (R1& R2), their leakage reactances (X1& X2) and magnetizing leakage reactance Xm as shown in Figure 

1.  

 

 

 

 

 

 

  

 

Figure 1:Steady state equivalent circuit of an induction motor 

 

Assuming X1 = X2  (for simplification), problem of parameter estimation (of induction motor) can be converted 

to an optimization problem. Aim is to determine those values of four parameters, which lead to minimization of the 

difference between the estimated values and manufacturer supplied data values of full load torque, starting torque, 

maximum torque and full load power factor.  

 

OBJECTIVE FUNCTION 

 

Mathematically, the objective function is chosen as given in eqn. 1. 

 

Minimize W = W1+W2+W3+W4                       (1) 

 

  Where,          

 

W1 =
Tflc − Tflm
Tflm

,                    W2 =
Tstc − Tstm
Tstm

, 

 

 W3 =
Tmc − Tmm

Tmm
       and         W4 =

Tpfc − Tpfm

Tpfm
 

 

Tflc, Tstc , Tmc and Tpfc are the calculated values (from motor parameters) and  Tflm, Tstm, Tmm and Tpfm are the 

manufacturer supplied values of full load torque, starting  torque, maximum torque and full load power factor 

respectively. Expressions for the stator and rotor currents can be given by eqn.2& eqn.3 respectively. 
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I1⃗⃗  =  
Vph⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑅1+𝑗𝑋1+Z⃗⃗ 
                   where      Z⃗ =  

𝑗Xm×(
R2 
s
+jX2)

R2 
s
+𝑗 (𝑋2+𝑋𝑚)

                                            (2) 

 I2⃗⃗⃗⃗ =  
Z ⃗⃗  ⃗.𝐼1⃗⃗  ⃗

𝑅2
𝑠
+𝑗𝑋2

                                                                                              (3) 

By using slip, s = sfl (full load slip), 1 and smax respectively, the values of the full load torque, starting torque 

and maximum torque are determined by using eqn. 4. smax can be calculated by using  eqn. 5. 

 

Torque (T) =
1

ωs
3I2
2 R2

s
                                                                                   (4) 

Here, 

𝜔𝑠 = 2𝜋𝑁𝑠                        and     𝑁𝑠 =
120 𝑓

𝑝
 

 

 Ns is the synchronous speed in r.p.s , f and p are the frequency in hertz and number of poles respectively. 

 

                                                                  smax =
R2

√Rth
2 +(Xth+X2)

2
(5) 

where Rth and Xth are the resistive and reactive components of the Thevenin equivalent impedance when  part of 

the circuit (shown in Figure 1) to the left of the terminals AB is replaced by its Thevenin equivalent. As already 

assumed, X1 = X2, there are four parameters to be optimized to minimize the objective function defined by eqn. 1. 

Following constraints [10] are also taken into account while solving the problem of optimization: 

Tmc − Tmm
Tmm

≤ ±0.02 

 

 and values of R1, R2, X1, X2 and Xmare greater than zero. The complexity of this problem results in error 

surfaces, which are multimodal and it becomes very difficult to minimize the cost function. In this work, a chaos 

embedded firefly algorithm is used to solve this problem. This algorithm has been discussed in details in the next 

sub-section. 

 

FIREFLY OPTIMIZATION ALGORITHM 

Developed by X.-S Yang in 2010, firefly optimization algorithm is based on the flashing characteristics of 

fireflies & is applicable to a number of engineering optimization problems. Flashing lights are produced by fireflies 

to attract their partner or to protect themselves from predators. Intensity of this flashing light decreases as distance 

from the source increases.  This behavior has been modeled as Firefly optimization algorithm, where, light intensity 

is directly proportional to fitness function of the optimization problem. In fact, this algorithm is inspired from the 

social behavior of fireflies. It uses the following three rules: 

 

1. All fireflies are assumed to be unisexual, i.e., one firefly will be attracted to other fireflies irrespective of 

their sex.   

 

2. Attractiveness is directly proportional to brightness, i.e., less bright firefly moves towards a brighter one; 

also, brightness reduces with increasing distance between fireflies. I(r), the light intensity at a distance r, 

can be defined by eqn. 6. 
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                                                                            (6) 

here, I0  is the original light intensity, γis the light absorption coefficient. Attractiveness of a firefly can be defined 

by eqn. 7.             

                                                               (7) 

 

β0 represents the attractiveness at r =0. Eqn. 8 represents the movement of ith firefly (at xi ) to more brighter jth 

firefly (at xj ). 

 

                                                        (8) 

 
 

First term of eqn. 8 represents attraction & the second term represents randomization, α is the randomization 

parameter and εi is a vector of random numbers drawn from Gaussian distribution. A firefly moves randomly in the 

space if none of the other fireflies is brighter than it.  

 

3. Brightness of a firefly is directly related to the cost function.  

 

CHAOS EMBEDDED FIREFLY ALGORITHM 

A deterministic system with an unpredictable behavior is said to be chaotic. ‘Order’ is not completely absent in such 

system, rather, it has some element of randomness. Chaos is considered to be a part of nonlinear dynamical systems 

(Fister, Perc et. al., 2015). In mathematics, chaotic phenomenon is detected by iterated functions returning random 

value during each iteration.  Sequence of numbers generated by chaotic functions constitutes chaotic maps (or orbit). 

Such orbits show aperiodicity and have sensitive dependence on initial conditions.  

 

Chaotic functions can provide structured randomness. In swarm intelligence based algorithms, randomness 

plays an important role by exploration of new solutions. Thus, chaotic functions can replace random generators in a 

number of applications & increase the exploration power of the search process. Most commonly used chaotic maps 

have been listed in TABLE 1. 

 

 From eqn. 8, it can be observed that β and γ are two important parameters of firefly algorithm. In chaotic firefly 

algorithms, these parameters can be tuned by using chaotic maps (Fister, Perc et. al., 2015). For the present problem 

of parameter estimation of equivalent circuit of induction motors, it was observed (via extensive simulations) 

that tuning of  γ by chaotic maps was not much effective to improve the quality of solution. However, tuning of 

attractiveness coefficient, i.e., ‘β′ was quite effective.  

 

Hence, the used chaos embedded firefly algorithm performs following two additional operations with standard 

firefly algorithm: 

 

1. Tuning of attractivenessβ by using eqn. 9[Iztok Fister et al. , 2015]. 

 

                                                                               βi = β0 Ki(N)                                      (9) 
 

             Here, Ki(N) is the Nth chaotic map ( given in TABLE 1).  

 

2. A novelty is added to the process by performing chaotic search around the best solution after the end of 

each iteration, as shown in flowchart of Figure 2. 
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                                                Table 1:Description of some 1-d chaotic maps 

Name Equation 

Logistic 

map 
𝑥𝑘+1 =  𝛼𝑥𝑘(1 − 𝑥𝑘)    for    𝛼 < 0 

Kent 

map 

 

 

m=0.3            for      0<m<1 

𝑥𝑘+1 =
𝑥𝑘

𝑚
         for    0<xk<m 

𝑥𝑘+1 =
1−𝑥𝑘

1−𝑚
     for    m<xk<1 

 

Intermittency 

map 

 

 

𝑥𝑘+1 =∈+𝑥𝑘+𝑐𝑥𝑘
𝑛𝑓𝑜𝑟  0<𝑥𝑘≤𝑃 

𝑥𝑘−𝑃

1−𝑃
               𝑓𝑜𝑟 𝑃<𝑥𝑘<1

 

where, 

P=0.6, ∈=0.001, n=2 &  c=
1−∈−𝑃

𝑃𝑚
 

 

Tent 

map 

 

𝑥𝑘+1 = {

𝑥𝑘
0.7

𝑓𝑜𝑟𝑥𝑘 < 0.7

10(1 − 𝑥𝑘)

3
 𝑓𝑜𝑟 𝑥𝑘 ≥ 0.7

 

 

Sine 

map 
𝑥𝑘+1 = 

𝑎

4
sin(𝜋𝑥𝑘) 

where, a = 4 

Chebyshev 

map 
xk+1 = cos(kcos−1(𝑥𝑘)) 

 

Gauss 

map 

 

a = 4.9     b = -0.58 

𝑥𝑘+1 = exp(−𝑎𝑥𝑘
2) +  𝑏 

𝑥𝑘 =
𝑥𝑘+1
2

 

 

Iterative 

map 

 

𝑥𝑘+1 = sin(
𝑎𝜋

𝑥𝑘
) 

Here, ‘a’ belongs to [0,1] 

 

 

Piecewise 

map 

 

𝑥𝑘+1 = 

{
 
 

 
 

𝑥𝑘

𝑃
𝑓𝑜𝑟 0 ≤ 𝑥𝑘 < 𝑃

𝑥𝑘−𝑃

0.5−𝑃
𝑓𝑜𝑟𝑃 ≤ 𝑥𝑘 <

1

2
1−𝑃−𝑥𝑘

0.5−𝑃
𝑓𝑜𝑟

1

2
≤ 𝑥𝑘 < 1 − 𝑃

1−𝑥𝑘

𝑃
𝑓𝑜𝑟 1 − 𝑃 ≤ 𝑥𝑘 < 1 

 

Here, ‘P’ belongs to [0,5] 

 

 

Singer 

map 

 

𝑥𝑘+1 =𝜇(7.86𝑥𝑘 −  23.31𝑥𝑘
2 +  28.75𝑥𝑘

3 - 13.3028.75𝑥𝑘
4) 

where, 𝜇=1.07 
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Figure 2:  Flowchart of chaos embedded firefly algorithm 

  Start 

Initialize: 
 Number of  fireflies (n) 

 Number of iterations (N) 

 Randomization term (α) 

 Attractiveness coefficient (β) 

 Absorption coefficient (y) 

 Define Objective function 

 Iteration number = 1 

 Generate initial population of fireflies (x1,x2, …, xn) 

 Determine light intensity at each firefly (I1, I2, …, In) 

Tuning of attractiveness coefficient (β) with 

help of chaotic map 

for i = 1 : n 

for j = 1 : n 

If  (Ii< Ij), move ith firefly towards jthfirefly 

end if 

Vary attractiveness coefficient (β) with 

distance (‘r’) via e-yr 

Evaluate new solutions and update light 

intensity 

end 

end 

Calculate the rank of all the fireflies and 

find the current best solution. 

Chaotic search around the best 

solution 

 Is Iteration number ≥ N  or Is 

Stopping Criteria Satisfied 

Iteration number = iteration number + 1 

 

Yes 

Stop 

 

No 
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SIMULATION RESULTS 

 

The proposed algorithm is tested on a motor of 40 H.P. The manufacturer data for the motor is shown in TABLE 3. 

In TABLE 2, comparative study of performance of chaos embedded algorithm has been done with standard firefly 

algorithm. In the same Table, effect of using different chaotic maps in the proposed algorithm has been given.  

 

Initial parameters used for the canonical firefly algorithm are as follows:  

 

α = 0.1;  

minimum value of β= 0.20; 

 absorption coefficient γ = 1,  

number of fireflies = 20  

and number of iterations = 400. 

 

The estimated values of  the design parameters (rotor and stator resistances (R1& R2), their leakage 

reactances (X1& X2 ) and magnetizing leakage reactance Xm), by use of canonical firefly algorthm and chaos 

embedded firefly algorithms (using different chaotic maps) have been given in TABLE 4. Range of values of all the 

four parameters to be optimized (R1, R2, X1=X2, Xm) is between 0.1 ohms to 10 ohms. From TABLE 2, it can be 

observed that the performance of the chaos embedded firefly algorithm (except in the case of Chebyshev map) is 

better than that of the canonical firefly algorithm as the errors (between values of starting torque, full load torque, 

maximum toque and full load power factor respectively as calculated from estimated values and manufacturer’s 

data) are  reduced by embedding  chaos in firefly algorithm. Best results have been given by the use of piecewise 

map as it results in the minimum value of  objective function.  

 

                               Table 2:Comparison of performance  

 Starting 

torque 

(Nm) 

Full load 

torque 

(Nm) 

Maximum 

torque 

(Nm) 

Full 

load 

power 

factor 

 

Objective 

function 

value 

Manufacturer 

 Data 

260 190 370 0.8 - 

Standard 

Firefly 

algorithm 

259.82 189.43 369.39 0.7992 0.0074 

Logistic map 258.91 189.89 369.81 0.7995 0.0066 

Kent map 259.61 189.67 370.27 0.7993 0.0058 

Intermittency 

map 

260.35 189.24 369.88 0.8000 0.0057 

Tent map 260.18 189.96 369.84 0.8010 0.0039 

Sine map 260.18 190.05 369.43 0.8004 0.0035 

Chebyshev 

map 

258.73 189.72 369.93 0.7985 0.0106 

Gauss map 260.00 189.34 369.90 0.8002 0.0042 

Iterative map 259.92 190.57 369.83 0.7997 0.0045 

Piecewise 

map 

259,77 190.15 370.42 0.7997 0.0034 

Singer map 261.16 189.88 370.01 0.7997 0.0058 
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                  Table 4 :Estimated parameters values 

 
R1 

(Ohms) 

R2 

(Ohms) 

X1=X2 

(Ohms) 

Xm 

(Ohms) 

Standard 

Firefly algorithm 
0.2785 0.3621 0.4802 7.5876 

Logistic map 0.2725 0.3618 0.4833 7.6429 

Kent map 0.2712 0.3627 0.4833 7.6501 

Intermittency map 0.27624 0.3632 0.48107 7.6466 

Tent map 0.2804 0.3610 0.4786 7.6231 

Sine map 0.2845 0.3600 0.4765 7.5564 

Chebyshev map 0.2691 0.3626 0.4850 7.6409 

Gauss map 0.2746 0.3632 0.4821 7.6690 

Iterative map 0.2830 0.3588 0.4765 7.5179 

Piecewise map 0.2742 0.3612 0.4811 7.6209 

Singer map 0.2843 0.3604 0.4755 7.5281 

 

CONCLUSION 

In this paper, the problem of equivalent circuit’s parameter estimation of induction motor has been transformed to 

a multidimensional optimization problem. Ten different  chaotic sequences have been used to tune the attractiveness 

coefficient, i.e., ‘β′ of the standard (canonical) firefly algorithm to improve its estimation results. Novelty is added to 

the optimization process by performing chaotic search around the solution after each iteration of firefly algorithm. 

Through simulations, the potential of the proposed methodology stands demonstrated & it has been concluded that  

the best result in this problem is achieved by the use of piecewise  (chaotic) map along with the standard firefly 

algorithm. 

 

 

 

Table 3:Manufacturer data of 

induction motor 

 

Rated Power (P) 40 HP 

Voltage (V) 400 volts 

Frequency (f) 50 Hz 

Number of poles (p) 4 

Starting Torque 260 Nm 

Full load Torque 190 Nm 

Maximum Torque 370 Nm 

Full load power factor 0.8 

Full load slip 0.09 
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